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Single-valley engineering in graphene superlattices
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The two inequivalent valleys in graphene are protected against long-range scattering potentials due to their
large separation in momentum space. In tailored

√
3N × √

3N or 3N × 3N graphene superlattices, these two
valleys are folded into � and coupled by Bragg scattering from periodic adsorption. We find that, for top-site
adsorption, strong intervalley coupling closes the bulk gap from inversion symmetry breaking and leads to a
single-valley metallic phase with quadratic band crossover. The degeneracy at the crossing point is protected by
C3v symmetry. In addition, the emergence of pseudo-Zeeman field and valley-orbit coupling are also proposed,
which provide the possibility of tuning valley polarization coherently in analogy to real spin for spintronics. Such
valley manipulation mechanisms can also find applications in honeycomb photonic crystals. We also study the
strong geometry-dependent influence of hollow- and bridge-site adatoms in the intervalley coupling.
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I. INTRODUCTION

Honeycomb Dirac materials have twofold-degenerate band
structures with inequivalent KK′ valleys [1–5], whose origin
can be traced back to the bipartite nature of honeycomb
lattices (A and B triangular sublattices). This binary valley
degree of freedom has led to proposals of valleytronics
applications [6–12] that leverage the valley pseudospins in a
manner analogous to electron spins in spintronics applications.
A distinct scenario is that of single (odd-number) Dirac cone
in Z2 topological insulators [13] where their surface states
are effectively decoupled from each other due to their distant
spatial separation. Therefore, a single Dirac-cone structure is
desirable when we require a Hamiltonian that embodies the
chiral anomaly of Dirac fermions [14] and at the same time is
protected against intervalley scattering.

In this paper, we propose to engineer a single-valley
phase in two-dimensional (2D) honeycomb Dirac materials
through

√
3N × √

3N or 3N × 3N superlattices that fold and
couple the inequivalent KK′ valleys into the same �. Utilizing
the π -band tight-binding model and block-diagonalization
method, we show that the effective Hamiltonian for top-site
adsorbed superlattices exhibits intervalley coupling and valley-
orbit coupling mechanisms that resemble the conventional
in-plane Zeeman fields and spin-orbit coupling of the electron
spins [1,2,15–20]. The pseudo-Zeeman field and pseudo-spin-
orbit coupling allow us to control valley polarization coher-
ently, while the latter one further indicates the possibility of
manipulating valley polarization via electric fields. Moreover,
together with the coexisting staggered sublattice potentials,
we find that intervalley coupling can drive a topological

*Corresponding author: qiao@ustc.edu.cn

phase transition from a quantum valley-Hall phase into a
single-valley metallic phase with quadratic band crossover.
We also propose that such intervalley coupling mechanism
and quadratic band crossover can be observed in photonic
crystals. Then, we turn to the hollow- and bridge-site decorated
graphene and find that the intervalley coupling mechanisms are
strongly dependent on the adsorption geometry.

The remainder of this paper is organized as follows. The
intervalley coupling of top-site adsorption and the topolog-
ical phase transition are presented in Sec. II. The possible
applications of the band-crossing phase are then discussed.
The results of hollow and bridge adsorption are shown in
Sec. III and we present the summary in Sec. IV. Appendixes
A and B separately present the methods for calculating the
photonic band structure and the effective Hamiltonians of three
adsorption geometries based on the symmetry analysis.

II. TOP-SITE ADSORPTION

A. Intervalley coupling

When the
√

3N × √
3N or 3N × 3N supercells are tailored

on a honeycomb lattice, KK′ valleys are coupled by Bragg
scattering [21] since they are folded into � valley, as illustrated
schematically in Fig. 1(b) showing the reciprocal lattices for
both 1 × 1 (red) and

√
3 × √

3 (black) supercells. Here, we
only focus on the top-site adsorption in

√
3 × √

3 supercell
as shown in Fig. 1(a) where the six atoms in each primitive
cell can be classified into three different categories: (i) one
at the adatom site, (ii) three at the nearest-neighbor sites, and
(iii) two at next-nearest sites. We represent the corresponding
site energies as u1, u2, and u3, and set u3 = 0 as the reference
value. Assuming that the adsorption sites belong to sublattice
“A”, the real-space tight-binding Hamiltonian can be written
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FIG. 1. (Color online) Schematic representation of intervalley
coupling adatom superlattices and their respective Brillouin zones. (a)
and (b) are, respectively, primitive and reciprocal lattices for the top
adsorption in

√
3 × √

3 graphene supercells. The red lines represent
the Brillouin zone of pristine graphene.

as

Ht = H0 + u1

∑
i

′
a
†
i ai + u2

∑
i

′ ∑
δ

b
†
i+δbi+δ, (1)

where
∑

i
′ runs over all adatom sites and a

†
i (b†i ) is the

creation operator of an electron at ith A (B) site. Here, H0 =
−t0

∑
〈ij〉(a

†
i bj + H.c.) is the band Hamiltonian of pristine

graphene with t0 being the nearest-neighbor hopping energy.
The Brillouin zone of pristine graphene can be represented

through three copies of
√

3 × √
3 graphene supercell’s first

Brillouin zone as displayed in Fig. 1(b). The three copies
are set to be centered at Kj (j = 1–3) that are, respec-
tively, wave vectors of K , K ′, and � points. Therefore,
the operator ai can be expanded in momentum space as
ai = 1√

N0

∑
k

∑
j exp[i(Kj + k) · Ri]aj,k , where N0 is a nor-

malization factor, and k runs over the first Brillouin zone of√
3 × √

3 graphene supercell. Then, the Hamiltonian of Eq. (1)
can be expressed in momentum space as

Ht(k) = H0(k) +
∑
j,j ′

[
u1

3
a
†
j,kaj ′,k + u2

3
ξjj ′b

†
j ′,kbj,k

]
, (2)

where H0(k) = −t0
∑

j (χjka
†
j,kbj,k + H.c.) describes the ki-

netic energy of pristine graphene with χjk = ∑
δ ei(Kj +k)·δ ,

and ξjj ′ = ∑
δ ei(Kj −Kj ′ )·δ . The last two terms give sublattice

potentials when j = j ′ which are different for AB sublattices
due to inversion symmetry breaking. When j �= j ′, they give
rise to intervalley coupling through a finite u1 contribution
while the u2 contribution vanishes due to the phase interference
(ξ12 = 0). By block diagonalization, the low-energy effective
Hamiltonian can be further obtained:

H eff
t = U0 + vF (τzkxσx + kyσy) + 	1σz + 	2

2
(1 + σz)τx,

(3)

where U0 = (	2 + u2)/2 and 	1 = (	2 − u2)/2 with 	2 =
u1/3. τ and σ are, respectively, Pauli matrices of KK′ valleys
and AB sublattices. The third term reflects the effective
potential imbalance through a mass term of magnitude 	1

and the last term describes intervalley coupling through the τx

operator. We note that the coupling between K and K ′ valleys
only occurs at “A” sublattice with the coupling amplitude 	2

depending on u1 linearly. Such an intervalley coupling acts
on the valley pseudospin as an effective Zeeman field that
can be used to control the valley polarization coherently in
valleytronics devices.

When the nearest-neighbor hopping terms of superlattice
Hamiltonians are allowed to change by δt = t − t0 due to
the influence of the adatoms, the real-space tight-binding
Hamiltonian in Eq. (1) acquires an additional term H ′ =∑′

〈i,j〉δt(a
†
i bj + H.c.) where the index i runs over “A” sites

right underneath the adatoms and the j sites represent the
three nearest “B” sites. The modified effective Hamiltonian
becomes

H eff
t

′
(k) = U ′

0 + v′
F (τzkxσx + kyσy) + 	′

1σz1τ

+ 	′
2

2
(1σ + σz)τx + vδσy(τykx + τxky), (4)

where (U ′
0, 	′

1) have the same forms as (U0, 	1) by changing
	2 to be 	′

2 = 3u1t
2
0 /(t + 2t0)2, and the Fermi velocity is

modified to be v′
F = vF (2t + t0)/(t + 2t0). The last term in

Eq. (4) can be identified as a valley-orbit interaction of
strength vδ = vF (t − t0)/(t + 2t0) coupled with a sublattice-
flip potential. This term also couples different valleys and
implies the possibility of manipulating the valley degree of
freedom by external electric field in a manner analogous to
the control of electron spin by electrical means via spin-orbit
coupling.

B. Single-valley metallic phase

Adatom superlattices lead to both intervalley coupling
and inversion symmetry-breaking potentials. It is easy to
understand that each term can independently contribute in
opening a Dirac point gap when they are viewed as uniform
in-plane xy and out-of-plane z contributions to the pseudospin
fields in the Dirac Hamiltonian [22], where the former shifts
the position of the Dirac points in momentum space and the
latter introduces an inversion symmetry-breaking gap in the
Dirac cones. Here, we show that when those effects are present
simultaneously in a superlattice, a topologically distinct single-
valley phase can be engineered. We begin considering for
sake of clarity the top-adsorption configurations neglecting the
modification of the hopping energy in the band Hamiltonian
and setting the site energies at all “B” sublattices to an assumed
constant value (i.e., UB = u2 < 0). When u1 = 0, the site
energies at all “A” sublattices are identical, i.e., UA = 0. This
leads to vanishing intervalley coupling and the imbalanced
sublattice potentials open a quantum valley-Hall gap at the
Dirac points, where the doubly degenerate massive Dirac
cones are folded as a single valley around the � point but
remain distinguishable [see Fig. 2(a)]. When we allow u1

to take negative values, we find a gradual decrease of the
inversion symmetry-breaking induced gap |	1| and an increase
of intervalley coupling strength |	2| that lifts the degeneracy
of the conduction bands splitting by a magnitude of 2	2 [see
Fig. 2(b)]. The simultaneous presence of both terms breaks
the particle-hole symmetry and leads to a smaller bulk gap
	′ = |2	1 + 	2|. However, the degeneracy of valence band
edge is also present since it is protected by C3v symmetry (see
Appendix B).
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FIG. 2. (Color online) Topological transition from a quantum
valley-Hall insulator to a single-valley phase as a function of
the parameters u1. Here, we set u2 to be fixed with u2 < 0
and u3 = 0. −2	2 corresponds to the local band gap from the
intervalley scattering. 	′ measures the bulk (local) band gap from the
competition between intervalley coupling and sublattice potentials.
The progressive decrease of u1 leads to a complete closure of the
quantum valley-Hall gap and then transitions to the single-valley
phase by reversing 	′.

When u1 is even further decreased and reaches a critical
value of u1 = 3u2/2, the bulk gap 	′ completely closes as
shown in Fig. 2(c). Here we achieve a single band touching
point at � formed by a Dirac cone centered at the edge of
the parabolic valence band. In this limit where the bulk gap
is closed, the valley-Hall effect is absent and the valleys are
no longer distinguishable. When we allow even smaller values
of u1, the intervalley coupling strength |	2| further increases,
while the magnitude of the staggered sublattice potentials |	1|
first decreases to zero then increases again. During this process,
a conduction-valence band inversion happens due to the strong
intervalley coupling and the doubly degenerate valence band
edges are split by a local band gap of 	′ = |(2|	1| − |	2|)|
as displayed in Fig. 2(d). This band inversion drives the C3v

protected degenerate valence band edges into a crossing point
between conduction and valence bands producing a valley-
mixed metallic phase with quadratic band crossover.

A detailed analysis of the band crossover at low-energy limit
shows that, when |	2| � |	1|, the low-energy Hamiltonian of
the quadratic touching bands can be further simplified as

H eff
t

′′
(k) = U ′′

0 + αk2 − β

[
0 (π †)2

π2 0

]
, (5)

which is represented on the basis of “B” sublattice from both K

and K ′ valleys. Here, we define U ′′
0 = U0 − 	1, k2 = k2

x + k2
y ,

α = 	1v
2
F /(	2

2 − 	2
1), and β = 	2v

2
F /(	2

2 − 	2
1). The last

term couples states between valleys K and K ′ with π =
kx + iky , and gives rise to the quadratically dispersing Fermi
point band structure in analogy to bilayer graphene. However,
an additional term, i.e., αk2, is present due to the inversion
symmetry breaking which breaks the chiral symmetry and
makes the low-energy bands different from that of bilayer
graphene at K or K ′ valley.

C. Quadratic band crossover

Apart from the chiral symmetry breaking, the main differ-
ence between this band crossover and that of bilayer graphene
is that here we have only a single parabolic dispersion. This
is of interest because it provides an ideal platform to study
the single Dirac-cone transport phenomena of Z2 topological
insulators and allows us to explore the chiral anomaly of
single valley physics that is not compensated by its time-
reversal counterpart. For example, if broken-symmetry gapped
phases are developed in the presence of electron-electron
interactions [23–25], a mass sign-dependent spontaneous
orbital moment will develop per spin valley [25–27]. In
our single-valley phase, it is expected that when the Fermi
surface lies at the crossing point, a quantum anomalous Hall
ground state will develop when both spin components have
the same mass or, alternatively, a quantum spin-Hall state
will be present when the masses for each spin term have
opposite signs [28]. Besides, a superconducting phase can also
be expected when the Fermi surface is shifted away from the
crossing point [29]. Whereas the energetically favored ground
state depends on details of the band Hamiltonian and the
models for the electron-electron interaction, further control of
quantum phase transitions should be achievable by means of
external magnetic fields coupling with the spontaneous orbital
moments. Furthermore, in bilayer graphene, the magnitude of
the gaps predicted in a Hartree-Fock theory without dynamical
screening is on the order of a few tens of meV [25], whereas
experimental gaps turned out to be an order of magnitude
smaller ∼2 meV [30] due to the exponentially increasing
screening feedback when the gaps are small. Thus, it is
expected that substantially larger gaps can develop, if flatter
bands can be tailored when the leading parabolic dispersion
coefficients can be made smaller than the one used in bilayer
graphene. Moreover, in the presence of strong magnetic field,
the anomalous Landau-level quantization can also be expected
as that in the bilayer graphene case [31].

D. Photonic-crystal bands

Experimental realizations of periodic graphene superlat-
tices could take advantage of substrates that can generate the
3 × 3- or

√
3 × √

3-type superstructure, like EuO(111) [32]
and Ag(111) substrates [33]. There are also other meth-
ods for engineering such kind of superstructures, e.g., sil-
icene on Ag(111) substrate [34], InSb(111) surface [35],
artificial organic molecular lattice [36], or patterned two-
dimensional electron gas with well-established experimental
technique [37]. The applicability of our theory depends on the
degree of the achievable commensurability with the crystal
structure of honeycomb lattices. It is noteworthy that, since our
model is spin independent, it can also apply to bosonic systems
such as cold atoms [38] or photonic crystals [39] in honeycomb
superlattices. One possibility is to use honeycomb photonic
crystals made of silicon columns linked by thin silicon slabs
as shown in the upper panel of Fig. 3, and use electromagnetic
waves with transverse-magnetic modes in the xy plane. The
corresponding site potentials and hopping energies for the
photonic-crystal setup can be controlled through the column
radius r and the link width d. The confinement radii allow
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FIG. 3. (Color online) Upper panel: schematic representation of
honeycomb photonic crystals with a

√
3 × √

3 periodicity. 	α1 and 	α2

denote the primitive vectors. The distance between nearest columns
is set to be a and the slab width is d = 0.1a. ri (i = 1–3) label
the radii of different columns. In our simulation, each column is
chosen to be infinitely long. Lower panel: photonic band structures of
transverse-magnetic modes along high-symmetry lines for different
radii r1 = 0.18a (a), 0.23a (b), 0.28a (c), and 0.32a (d), respectively.
Here, we set r2 = 0.25a and r3 = 0.18a.

us to tune the concentration of electrical-field energy of the
harmonic modes.

If the columns’ radii are identical and the connecting slabs
have the same width, the two-dimensional photonic band struc-
ture for transverse-magnetic modes (see more details in the
Appendix) obtained from the finite-elements method [40,41]
shows two linearly dispersing Dirac cones, closely resembling
the band structure of pristine graphene [39,42] (also see
the Appendix). To model the

√
3 × √

3 graphene supercell,
we first classify the columns’ radii into three categories ri

(i = 1–3) with r3 = 0.18a as a reference, and the link width is
chosen to be d = 0.10a with a being the distance between two
nearest columns. Figures 3(a)–3(d) display the photonic band
structures for different r1 = 0.18a (a), 0.23a (b), 0.28a (c), and
0.32a (d) at fixed r2 = 0.25a along high-symmetry lines. One
can observe a topological phase transition from an insulator to a
single-valley metallic phase when r1 is progressively increased
(see the highlighted regions) in a way closely similar to the
behavior of the electronic band structure shown in Fig. 2.

III. HOLLOW AND BRIDGE ADSORPTIONS

In this section, we present the intervalley coupling mecha-
nisms for hollow and bridge adsorptions in 3 × 3 honeycomb
supercells as shown in Figs. 4(a) and 4(c). For both cases, the
inversion symmetry is preserved and thus staggered sublattice
potential is absent, which is different from top adsorption.
The corresponding first Brillouin zones for pristine graphene
and graphene supercells shown in Fig. 4(b) in red and black,
respectively, where K and K ′ points of pristine graphene are
also folded into � inducing intervalley coupling.

We first study the hollow adsorption as shown in Fig. 4(a).
By considering only the site energies surrounding the adatoms,

FIG. 4. (Color online) Primitive cells for hollow-site (a) and
bridge-site (c) adsorptions. 	αi indicates the primitive lattice vectors
for 1 × 1 (in red) and 3 × 3 (in black) graphene supercell. u1 denotes
the site energy induced by the adatoms. (b) Reciprocal lattices for
1 × 1 (in red) and 3 × 3 (in black) graphene supercell. (d), (e)
Low-energy band structures for hollow- and bridge-site adsorptions.
	 indicates the local gap from pseudo-Zeeman field in bridge
adsorption.

the real-space π -orbital tight-binding Hamiltonian is written
as

Hh = H0 + u1

∑
i

′
(a†

i ai + b
†
i bi), (6)

where
∑′

i runs over six atoms nearest to adatoms with site
energy of u1. Since the Brillouin zone of pristine graphene
can be divided into nine copies of that of 3 × 3 graphene
supercell, the operator ai can be expanded in momentum
space as ai = 1√

N0

∑
k

∑
j exp[i(Kj + k) · Ri]aj,k , where Kj

(j = 1–9) denotes the center of j th copy and k runs over
the Brillouin zone of 3 × 3 graphene supercell. Therefore, the
Hamiltonian of Eq. (6) in momentum space can be expressed
as

Hh(k) = H0(k) +
∑
j,j ′

u1

9
ξjj ′(a†

j,kaj ′,k + b
†
j ′,kbj,k). (7)

In the second term, j = j ′ gives equivalent AB sublattice
potentials, while j �= j ′ couples different parts. Although the
direct coupling between valleys KK′ vanishes due to phase
interference, i.e., ξ12 = ∑

δ ei(K−K′)·δ = 0, a band gap opens
at the � point with four lower-energy bands around the
gap mainly contributed from eigenstates near valleys KK′ as
shown in Fig. 4(d). This suggests that the gap is induced by
intervalley coupling from higher-order effects. By doing a
block diagonalization [43], a low-energy effective Hamiltonian
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with nontrivial contribution from u1 can be obtained:

H eff
h = u1

3
+ vF (τzkxσx + kyσy) + u2

1

9t0
τxσx, (8)

where the first term is an energy shift relative to the charge
neutrality point. The last term couples valleys K and K ′ where
τx implies a pseudo-Zeeman field in the x direction to induce
a precession of valley polarization. Moreover, the coupling
only occurs between different sublattices, and the resulting
band gap 2u2

1/9t0 indicates a second-order correction from
site energy u1.

Then, we turn to the bridge adsorption case as shown in
Fig. 4(c). Assuming that the adatom only influences the site
energies u1 of the nearest two carbon atoms and neglecting
the high-order contribution from � valley of graphene, the
continuum effective Hamiltonian for four lower bands can be
obtained similar to hollow adsorption, which can be expressed
as follows:

H eff
b = u1

9
+ vF (τzkxσx + kyσy) + u1

9
τx1σ , (9)

where the third term represents the first-order intervalley
coupling contributed from the onsite energy, which also acts
as a pseudo-Zeeman field in the x direction yet without a
sublattice flipping. This term shifts the two degenerate Dirac
cones of graphene and opens a local energy gap 	 = 2|u1|/9 at
k = 0 as shown in Fig. 4(e). The gap is closed at (±|u1|/9vF ,0)
due to the dispersion of energy bands where another two Dirac
cones are formed. It is noteworthy that the results in the
specific 3 × 3 or

√
3 × √

3 superlattices can be generalized
to 3N × 3N or

√
3N × √

3N ones indicated by the symmetry
analysis Appendix B.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we presented the theory for the intervalley
coupling mechanisms due to Bragg scattering in

√
3 × √

3
or 3 × 3 adatom decorated graphene supercells that act as
in-plane pseudo-Zeeman fields or pseudo-spin-orbit coupling.
Three possible adsorption geometries, i.e., top-, hollow-, and
bridge-site adsorption, are studied and we found that interval-
ley coupling mechanisms are sensitive to the adsorption site as
summarized in Table I. These intervalley coupling mechanisms
can be used to tailor valley pseudospins of honeycomb
lattices and have important implications in valleytronics,
where the coherent control of valley polarization is yet a
grand challenge due to the missing counterpart mechanisms
of spin-orbit couplings or Zeeman fields for spintronics.
Especially, the valley-orbit coupling in top adsorption case
makes it possible to control the valley polarization via electric
means. Moreover, our theory also suggests strategies for

TABLE I. Intervalley coupling mechanisms for different adsorp-
tion sites.

Adsorption site Symmetry Intervalley coupling

Top C3v (1 + σz)τx

Hollow C6v τxσx

Bridge C2v τx1σ

engineering single-valley electronic structure in conventional
Dirac materials with two inequivalent degenerate valleys by
folding them together. In addition, the single-valley phase for
top adsorption can be manipulated by combining intervalley
couplings and imbalanced sublattice potentials originated
from the inversion symmetry breaking. By increasing the
strength of intervalley coupling from zero, a topological
phase transition can take place from the quantum valley-Hall
phase to a chiral anomalous single-valley metallic phase
with quadratic band crossover that resemble the electronic
structure of a half Bernal-stacked bilayer graphene apart from
a chiral symmetry-breaking term. A concrete proposal for such
a single-valley phase is presented in honeycomb photonic
crystals since a spinless particle is considered in this work.
When the spin degree of freedom is further included in the
honeycomb structure (e.g., silicene [44]), the competition
between valley-mixing and spin-mixing mechanisms will give
rise to a rich variety of topological phases, which is beyond
the scope of this work and will be discussed in the future.

It is noteworthy that Ref. [45] presents similar intervalley
coupling terms. However, the physical origin of intervalley
coupling in our work is totally different from theirs, which
comes from the short-range components of scattering potential
from single adatom on graphene rather than Bragg scattering in
graphene superlattice. In addition, when the supercell slightly
deviates from the perfectly commensurate

√
3 × √

3 supercell,
the two inequivalent Dirac cones are preserved and remain
separate although an intervalley coupling gap can appear at
higher energies due to the coupling between states away from
K and K ′ points as discussed in Ref. [46].
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APPENDIX A: CALCULATION OF PHOTONIC BAND
STRUCTURE

In our simulation of photonic band structure, we consider
a honeycomb lattice with

√
3 × √

3 periodicity, which is
comprised of silicon columns linked with thin silicon slabs
in the vacuum background as shown in Fig. 5(a). The columns
are infinite in the z direction and their radii are ri (i = 1–3). In
our calculation, the electromagnetic wave propagates within
the xy plane, i.e., the wave-vector component along the
z direction is kz = 0. Various numerical methods can be
used to calculate the photonic band structure, such as plane-
wave method (PWE), finite-difference time-domain (FDTD)
method, and finite-elements method (FEM) [40,41]. Here,
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FIG. 5. (Color online) Left panel: schematic of honeycomb-
structured photonic crystals. The distance between nearest columns
is set to be a and the slab width is d = 0.1a. ri (i = 1–3) label the
radii of different columns. Right panel: the photonic band structure
with uniform column radii and the slab widths where Dirac cones
are present around the K point and K ′ point and the later one is not
shown for clarity of the figure.

FEM is employed, which is much efficient in calculating
structures with extremely small domains needing to be meshed.
The photonic band structure with the uniform column radii
and the slab widths are calculated as shown in Fig. 5(b), where
two Dirac cones in K and K ′ points for transverse-magnetic
modes [39,42] are formed, resembling the linear-dispersed
Dirac cones of pristine graphene.

APPENDIX B: SYMMETRY ANALYSIS

In this part, we derive the intervalley coupling mechanisms
utilizing symmetry analysis. We focus on the Hilbert space
spanned by four basis functions: |KA〉, |KB〉, |K ′

A〉, and |K ′
B〉

defined as follows:

|KA〉 = 1√
N

∑
i

eiK·[Ri+τA]|pz,i,A〉,

|KB〉 = 1√
N

∑
i

eiK·[Ri+τB]|pz,i,B〉,
(B1)

|K ′
A〉 = 1√

N

∑
i

eiK′ ·[Ri+τA]|pz,i,A〉,

|K ′
B〉 = 1√

N

∑
i

eiK′ ·[Ri+τB]|pz,i,B〉,

where A and B represent the A/B sublattices of graphene while
K and K ′ represent the two valleys with K(K′) = 2π

a
(± 2

3
√

3
,0)

and a being the distance between two nearest carbon atoms.
|pz,i,A(B)〉 is the pz orbital of carbon atom centered at Ri +
τA(B) denoting the position of the A(B) site in the ith unit cell.

For top adsorption, the system possesses the symmetry
represented by C3v point group with the rotation center locating
at the adsorption site assumed as A site. The symmetry
operators in C3v can be classified into three classes. The
first class is the invariant operation labeled by ê while the
second class is rotation operation around the z direction
by 2π/3 (4π/3) denoted by Ĉ3 (Ĉ2

3 ). The third class is
the mirror reflection about the three planes through rota-
tion center labeled by σ̂v [47]. The generating operators
are set as Ĉ3 and y-direction reflection σ̂v which can be
expressed as the following matrices on the basis of |KA〉,
|KB〉, |K ′

A〉, and |K ′
B〉 that form a reducible four-dimensional

representation T1:

T1(Ĉ3) = diag{1,ω,1,ω∗},

T1(σ̂v) =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ , (B2)

where diag indicates a diagonal matrix with ω = ei2π/3.
These matrices can be block diagonalized by a uniform
transformation that changes these bases into a new set of bases⎛

⎜⎜⎜⎝
|A+〉
|A−〉
|KB〉
|K ′

B〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1/
√

2 0 1/
√

2 0

1/
√

2 0 −1/
√

2 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

|KA〉
|KB〉
|K ′

A〉
|K ′

B〉

⎞
⎟⎟⎟⎠ . (B3)

The corresponding matrix representation of these operators
can be rewritten as

T2(Ĉ3) = diag{1,1,ω,ω∗},

T2(σ̂v) =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , (B4)

which indicates that |A+〉 and |A−〉 forms two inequivalent
one-dimensional irreducible representations labeled by A1

and A2 corresponding to the split conduction band edges in
Fig. 2(b). Moreover, {|KB〉,|K ′

B〉} form a two-dimensional
irreducible representation labeled by E that leads to the
double-degenerate valence band edges or crossing point shown
in Fig. 2.

Based on these three irreducible representations, we can
divide the effective Hamiltonian into nine blocks as follows
according to the invariant expansion method introduced in
Ref. [48]:

Heff =

⎛
⎜⎝

HA1A1 HA1A2 HA1E

HA2A1 HA2A2 HA2E

HEA1 HEA2 HEE

⎞
⎟⎠ , (B5)

where Hαβ is a Dα × Dβ matrix with Dα (Dβ) being the
dimension of irreducible representation α (β). In order to
obtain the effective Hamiltonian, we list in Table II the
symmetrized matrices for each block and the corresponding
tensor operators composed by momentum operators. Each
block can be obtained by the production of symmetrized matrix
and tensor operators [48]. Therefore, the effective Hamiltonian
of can be expressed as

Heff =

⎛
⎜⎜⎜⎝

	1t 0 η1tπ
† −η1tπ

0 	2t η2tπ
† η2tπ

η∗
1tπ η∗

2tπ 	3t η3tπ
†

η∗
1tπ

† η∗
2tπ

† −η3tπ 	3t

⎞
⎟⎟⎟⎠ , (B6)

where π = kx + iky while 	it and ηit (i = 1–3) are coupling
constants and are complex numbers in general with η∗

it being
corresponding conjugate number and subscript t indicating top
adsorption. In addition, due to the Hermiticity of Hamiltonian,
η∗

3t = −η3t indicates that η3t is a pure imaginary number.
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TABLE II. Symmetrized matrices and corresponding tensor
operators for each block of effective Hamiltonian for top adsorption
with C3v symmetry. A1, A2, and E represents the irreducible
representations of C3v point group. Mi is a 1 × 2 matrix with M1 =
(1,0) and M2 = (0,1). Ladder operators σ+,− = σx ± iσy with σx,y,z

being Pauli matrices. 	t is constant, π = kx + iky , and k2 = k2
x + k2

y .

Symmetrized Tensor
Block Representation matrices operators

HA1A1 A1 × A1 = A1 A1 : 1 A1 : 	t or k2

HA2A2 A2 × A2 = A1 A1 : 1 A1 : 	t or k2

HA1A2 A1 × A2 = A2 A2 : 1 A2 : 0
HA1E A1 × E = E E : {M1, − M2} E : {π,π †}
HA2E A2 × E = E E : {M1,M2} E : {π,π †}
HEE E × E = A1 + A2 + E A1 : 12×2 A1 : 	t or k2

A2 : σz A2 : 0
E : {σ+, − σ−} E : {π,π †}

Finally, we can express this effective Hamiltonian in the basis
of |KA〉, |KB〉, |K ′

A〉, and |K ′
B〉 as following by a unitary

transformation:

H eff
t =

⎛
⎜⎜⎜⎝

	At vtπ
† 	AAt −vδtπ

v∗
t π 	Bt v∗

δtπ η3tπ
†

	AAt vδtπ
† 	At −vtπ

−v∗
δtπ

† η∗
3tπ −v∗

t π
† 	Bt

⎞
⎟⎟⎟⎠ , (B7)

where 	At = (	1t + 	2t)/2, 	Bt = 	3t, 	AAt = (	1t −
	2t)/2, vt = (η1t + η2t)/

√
2, and vδt = (η1t − η2t)/

√
2. This

Hamiltonian has the same form as Eq. (4).
For hollow adsorption, the system has C6v symmetry with

the rotation center locating at the adsorption site. For this case,
we find that the four basis functions can be reconstructed
into two two-dimensional irreducible representations as
follows:

|m1〉 = (|KB〉 − |K ′
A〉)/√2,

|m2〉 = (|KA〉 − |K ′
B〉)/√2,

|p1〉 = (|KB〉 + |K ′
A〉)/√2,

|p2〉 = (|KA〉 + |K ′
B〉)/√2,

(B8)

where the former (latter) two bases give rise to an irreducible
representation that is odd (even) under rotation of π . Therefore,
we can divide the effective Hamiltonian into four blocks and
each block is a 2 × 2 matrix that can be written as follows in
the first order of momentum:

Heff =
(

	1h12×2 ηh(kxσx − kyσy)

η∗
h(kxσx − kyσy) 	2h12×2

)
, (B9)

where the diagonal terms lead to two double-degenerate energy
levels which are separately conduction and valence band edges
split by a gap of |	1h − 	2h| with subscript representing
hollow adsorption. This Hamiltonian can be expressed on the

basis of |KA〉, |KB〉, |K ′
A〉, and |K ′

B〉 as follows:

H eff
h = 	1h + 	2h

2
+

⎛
⎜⎜⎜⎝

0 vhπ
† vδhπ

† 	h

vhπ 0 	h vδhπ

v∗
δhπ 	h 0 −vhπ

	h v∗
δhπ

† −vhπ
† 0

⎞
⎟⎟⎟⎠ ,

(B10)

where 	h = 	2h − 	1h, vh = 2 Re(ηh), and vδh = 2i Im(ηh)
with Re (Im) indicating the real (imaginary) part of a complex
number. It is noted that there is no staggered sublattice potential
here due to inversion symmetry.

For bridge adsorption, we can also obtain the effective
Hamiltonian similarly. However, this effective Hamiltonian is
very complex since the symmetry of this system is lower than
the previous ones. For simplicity, we divide the system into two
parts where the first part is effective Hamiltonian of pristine
graphene with D6h symmetry and the second part accounts for
the effects of adatoms with C2v symmetry. The second part is
treated as perturbation with only the lowest-order contribution
being included. We find that the four degenerate basis functions
in pristine graphene can be reconstructed into four one-
dimensional presentations with the corresponding basis are

|mm〉 = (|KB〉 − |K ′
A〉 − |KA〉 + |K ′

B〉)/2,

|pm〉 = (|KB〉 + |K ′
A〉 − |KA〉 − |K ′

B〉)/2,

|mp〉 = (|KB〉 − |K ′
A〉 + |KA〉 − |K ′

B〉)/2,

|pp〉 = (|KB〉 + |K ′
A〉 + |KA〉 + |K ′

B〉)/2,

(B11)

where the left (right) m or p indicates that the wave function
is odd or even under rotation of π (y-direction reflection). We
can obtain the effective Hamiltonian in the zeroth order of
momentum that can be written as

Heff = diag{	1b,	2b,	3b,	4b} (B12)

where 	ib (i = 1–4) are constants with subscript b indicating
bridge adsorption. Then we express the effective Hamiltonian
as follows under the basis of |KA〉, |KB〉, |K ′

A〉, and |K ′
B〉:

H eff
b = vF (τzkxσx + kyσy) + 	11b

4
14×4

+ 1

4

⎛
⎜⎜⎜⎝

0 	21b 	31b 	41b

	21b 0 	41b 	31b

	31b 	41b 0 	21b

	41b 	31b 	21b 0

⎞
⎟⎟⎟⎠ , (B13)

where 	11b = ∑
i 	ib with i = 1–4, 	21b = −	1b −

	2b + 	3b + 	4b, 	31b = 	1b − 	2b − 	3b + 	4b, and
	41b = −	1b + 	2b − 	3b + 	4b. Here, the staggered
sublattice potential is absent similar to hollow adsorption and
	31b corresponds to the onsite potential induced intervalley
coupling while 	31b,41b are induced by the hopping term
modification that is neglected in Sec. IV.
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Solid State Commun. 149, 1499 (2009).
[22] J. Jung, A. Raoux, Z. H. Qiao, and A. H. MacDonald, Phys. Rev.

B 89, 205414 (2014).
[23] A. A. Abrikosov and S. D. Beneslavskii, J. Low Temp. Phys. 5,

141 (1971).
[24] H. Min, G. Borghi, M. Polini, and A. H. MacDonald, Phys. Rev.

B 77, 041407(R) (2008).
[25] J. Jung, F. Zhang, and A. H. MacDonald, Phys. Rev. B 83,

115408 (2011).
[26] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald,

Phys. Rev. Lett. 106, 156801 (2011).
[27] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809

(2007).
[28] J. M. Murray and O. Vafek, Phys. Rev. B 89, 201110(R) (2014).

[29] K. A. Pawlak, J. M. Murray, and O. Vafek, Phys. Rev. B 91,
134509 (2015).

[30] J. Velasco, Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M.
Bockrath, C. N. Lau, C. Varma, R. Stillwell, D. Smirnov, F.
Zhang, J. Jung, and A. H. MacDonald, Nat. Nanotechnol. 7, 156
(2012).

[31] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M.
I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 (2006).

[32] H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M.
Chshiev, Phys. Rev. Lett. 110, 046603 (2013).

[33] H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. Castro
Neto, and A. T. S. Wee, Sci. Rep. 2, 983 (2012).

[34] L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng,
Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804 (2012).

[35] M. Nishizawa, T. Eguchi, T. Misima, J. Nakamura, and T. Osaka,
Phys. Rev. B 57, 6317 (1998).

[36] Z. F. Wang, Z. Liu, and F. Liu, Phys. Rev. Lett. 110, 196801
(2013).

[37] C.-H. Park and S. G. Louie, Nano Lett. 9, 1793 (2009).
[38] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev.

Lett. 99, 070401 (2007).
[39] J.-Y. Yea, V. Mizeikisb, Y. Xua, S. Matsuoa, and H. Misawa,

Opt. Commun. 211, 205 (2002).
[40] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed.

(Wiley, New York, 2002).
[41] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.

Meade, Photonic Crystals: Molding the Flow of Light (Princeton
University Press, Princeton, NJ, 2008).

[42] C. Ouyang, Z. Xiong, F. Zhao, B. Dong, X. Hu, X. Liu, and J.
Zi, Phys. Rev. A 84, 015801 (2011).

[43] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer, Berlin, 2003).

[44] C. J. Tabert and E. J. Nicol, Phys. Rev. Lett. 110, 197402 (2013).
[45] A. Pachoud, A. Ferreira, B. Özyilmaz, and A. H. Castro Neto,
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